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Random variable

Random variable, informally, is a variable that takes on numerical
values and has an outcome that is determined by an experiment.

Random Variable: Let S be a sample space with a probability
measure. A random variable (or stochastic variable) X is a
real-valued function defined over the elements of S.

X :S → R
s → X (s)

Important convention: Random variables are always expressed in
capital letters. On the other hand, particular values assumed by the
random variables are always expressed by lowercase letters.

Remark: Although a random variable is a function of s; usually we
drop the argument, that is we write X ; rather than X (s).
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Random variable
Remark:

Once the random variable is defined, R is the space in which we
work with;
The fact that the definition of a random variable is limited to
real-valued functions does not impose any restrictions;
If the outcomes of an experiment are of the categorical type, we
can arbitrarily make the descriptions real-valued by coding the
categories, perhaps by representing them with the numbers.

Example (Coin Tossing)
One flips a coin and observes if a head or tail is obtained.

Sample Space: S = {H,T}

Random Variable:
X : S → {0, 1} with X (H) = 0 and X (T ) = 1.
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Random variable

The definition of random variable does not rely explicitly on the
concept of probability, it is introduced to make easier the
computation of probabilities. Indeed, if B ⊂ R, then

P(X ∈ B) = P(A), where A = {s ∈ S : X (s) ∈ B}

Is now clear that:

P(X ∈ B) = 1− P(X /∈ B).

In particular,

P(X ≤ x) = 1− P(X > x);
P(X < x) = 1− P(X ≥ x)
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Let X be a random variable. The cumulative distribution function
FX is a real function of real variable given by:

FX (x) = P(X ≤ x) = P(X ∈ (−∞, x ])

Properties of CDFs:
1) 0 ≤ FX (x) ≤ 1;
2) FX (x) is non-decreasing: ∀∆x > 0 : FX (x) ≤ FX (x + ∆x ) .
3) lim

x→−∞
FX (x) = 0 and lim

x→+∞
FX (x) = 1.

4) P (a < X ≤ b) = FX (b)− FX (a) , for b > a
5) lim

x→a+
FX (x) = FX (a); therefore X is right continuous

6) P(X = a) = FX (a)− lim
x→a−

FX (x) for any real finite number.
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Example (Coin Tossing)

One flips a coin and observes if a
head or tail is obtained.

Sample Space: S = {H,T}

Random Variable:
X : S → {0, 1} with X (H) =
0 and X (T ) = 1.

X counts the number of tails
obtained.

It is easy to see that:
P(X = 0) = 1/2,
P(X = 1) = 1/2. Since we have
FX (x) = P(X ≤ x), then

FX (x) =P(X ≤ x)

=


0, x < 0
1
2 , 0 ≤ x < 1
1, x ≥ 1
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Example (Dice Casting)
One flips a coin twice and counts
the number of tails obtained.

Sample Space: S =
{(H,T ), (H,H), (T ,H), (T ,T )}

Random Variable:
X : S → {0, 1, 2} with
X ((H,T )) = 1, X ((H,H)) = 0,
X ((T ,H)) = 1,X ((T ,T )) = 2.

It is easy to see that:
P(X = s) = 1/4, for s = 0, 2
and P(X = 1) = 1/2. Since we
have FX (x) = P(X ≤ x), then

FX (x) =


0, x < 0
1
4 , 0 ≤ x < 1
3/4, 1 ≤ x < 2
1, x ≥ 2
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Further properties:
P(X < b) = FX (b)− P(X = b)
P(X > a) = 1− FX (a)
P(X ≥ a) = 1− FX (a) + P(X = a)
P (a < X < b) = FX (b)− FX (a)− P(X = b)
P (a ≤ X < b) = FX (b)− FX (a)− P(X = b) + P(X = a)
P (a ≤ X ≤ b) = FX (b)− FX (a) + P(X = a)

Prove the previous properties!

Proof: To prove that P(X ≥ a) = 1− FX (a) + P(X = a), one notes
that:

P(X ≥ a) = 1− P(X < a) = 1− P(X ≤ a) + P(X = a)
= 1− FX (a) + P(X = a)
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Cumulative distribution function
The set of discontinuities of the cumulative distribution function DX
is given by DX = {x ∈ R : P(X = x) > 0} . Note that by property 6
this the same as

DX =
{

a ∈ R : FX (a)− lim
x→a−

FX (x) > 0
}
.
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Types of random variables
Discrete Random Variable: X is a discrete random variable if

DX 6= ∅ and
∑

x∈Dx

P(X = x) = 1.

Continuous Random Variable: X is a continuous random variable
if DX = ∅ and there is a non-negative function f such that

FX (x) =
∫ x

0
f (s)ds.

Mixed Random Variable: X is a mixed random variable if

DX 6= ∅,
∑

x∈Dx

P(X = x) < 1 and

∃λ ∈ (0, 1) tal que FX (x) = λFX1 (x) + (1− λ)FX2 (x)

where X1 is a discrete random variable and X2 is a continuous
random variable.
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Discrete random variables
X is a discrete random variable if

DX 6= ∅ and
∑

x∈Dx

P(X = x) = 1.

Additionally, the function fX : R→ [0, 1] defined by

fX (x) =
{

P(X = x), x ∈ DX

0, x ∈ DX
.

is called the probability function.

Theorem: A function can serve as the probability function of a
discrete random variable X if and only if its values, fX (x), satisfy the
conditions

0 ≤ fX (xj) ≤ 1, j = 1, 2, 3, ...∑∞
j=1 fX (xj) = 1.
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Discrete Random Variables

For discrete random variables, the cumulative distribution function is
given by :

FX (x) = P (X ≤ x) =
∑
xj≤x

fX (xj).

Generally,
P(X ∈ B) =

∑
xj∈B∩DX

fX (xj).

Theorem: If the range of a random variable X consists of the values
x1 < x2 < · · · < xn, then

fX (x1) = FX (x1), and fX (xi ) = FX (xi )− FX (xi−1),

for all i = 2, 3, · · · n.
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Discrete Random Variables

Example
Check whether the function given by f (x) = x+2

25 , for x = 1, 2, 3, 4, 5
can serve as the probability function of a discrete random variable X .
Compute the cumulative distribution function of X .
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Continuous Random Variables

X is a continuous random variable if DX = ∅ and there is a
function fX : R→ R+

0 such that

FX (x) =
∫ x

−∞
fX (s)ds.

Additionally, fX is called the probability density function.

Remark:
Continuity of FX is necessary, but not sufficient to guarantee
that X is a continuous random variable;
Note that P(X ∈ DX ) = P(X ∈ ∅) = 0;
The function fX provides information on how likely the outcomes
of the random variable are.
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Probability density function
Theorem. A function can serve as a probability density function of a
continuous random variable X if its values, fX (x), satisfy the
conditions:

fX (x) ≥ 0 for −∞ < x < +∞;∫ +∞
−∞ fX (x)dx = 1.

Example (Uniform Distribution)

Let X be a continuous random
variable with a probability
density function fX given by

fX (x) =
{

1/5, x ∈ [3, a]
0, x ∈ R \ [3, a]

Find the value of the parameter
a.

According to the previous
theorem, we know that

fX (x) ≥ 0, for −∞ < x < +∞∫ +∞

−∞
fX (x)dx = 1

From the second condition, we
get that a

5 −
3
5 = 1⇔ a = 8.
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Probability density function
Theorem. If fX (x) and FX (x) are the values of the probability
density and the distribution function of X at x , then

P(a ≤ X ≤ b) = FX (b)− FX (a) =
∫ b

a
fX (t)dt

for any real constants a and with a ≤ b, and

fX (x) = dFX (x)
dx , almost everywhere.

Remarks:
At the points x where there is no derivative of the CDF, FX , it is
agreed that fX (x) = 0. In fact, it does not matter the value that
we give to fX (x) as it does not affect the computation of FX .
The probability density function is not a probability and
therefore it can assume values bigger than one.
If X is a continuous random variable

P(X = a) =
∫ a

a
fX (t)dt = 0.
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Example (Triangle Distribution)
Consider the continuous random variable X with a probability density
function fX and cumulative distribution function given by

fX (x) =


0, x < 0
4x , 0 ≤ x ≤ 1

2
4− 4x , 1

2 ≤ x ≤ 1
0, x > 1

Cumulative density function:

FX (x) =


0, x < 0
2x2, 0 ≤ x < 1

2
−1 + 4x − 2x2, 1

2 ≤ x < 1
1, x ≥ 1

Is this function FX
differentiable?
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Theorem: If X is a continuous random variable and a and b are
real constants with a ≤ b, then

P(a ≤ X ≤ b) = P(a ≤ X < b)
= P(a < X ≤ b)
= P(a < X < b)

Proof: To prove the previous theorem one needs notice that:

P(a ≤ X ≤ b) =P(a < X < b) + P(X = a) + P(X = b)
=P(a < X ≤ b) + P(X = a)
=P(a ≤ X < b) + P(X = b)

Additionally, for c = a or c = b we have

P(X = c) = P(c ≤ X ≤ c) =
∫ c

c
fX (t)dt = 0

Remark: The previous inequalities are not necessarily true for
discrete random variables.
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Mixed random variable
Mixed Random Variable: X is a mixed random variable if

DX 6= ∅,
∑

x∈Dx

P(X = x) < 1 and

∃λ ∈ (0, 1) tal que FX (x) = λFX1 (x) + (1− λ)FX2 (x)
where X1 is a discrete r.v. and X2 is a continuous r.v..

Example
A company has received 1 million e to invest in a new business.
With probability 1

2 , the firm does nothing but with probability 1
2 the

money is invested. If it does not invest the money, 1 million e is
kept. Otherwise, the firm gets back a random amount uniformly
distributed between 0 and 3 million e.
Let X be the following random variable:

X = “Amount received by the company in millions”

What type of random variable is X?
Carlos Oliveira Statistics I: Chapter 2: Random Variables
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Example

S = [0, 3] and X =
{

1, with probability 1
2 (Scenario 1)

[0, 3], with probability 1
2 (Scenario 2)

X is not a discrete r.v. because it takes values in a continuous
set;
X is not a continuous random variable because P(X = 1) = 1/2
(For continuous random variables the probability to take one
single point is equal to 0).
X is a mixed random variable?

We can define two random variables:

X1 =“Amount received by the
company in millions in S1”

X2 = “Amount received by the
company in millions in S2”
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Example
Since P(X1 = 1) = 1, then

FX1 (x) =
{

0, x < 1
1, x ≥ 1

On the other hand, in scenario 2, the firm gets back a random
amount uniformly distributed between 0 and 3 million e. Therefore,

fX2 (x) =
{

1
3 , x ∈ [0, 3]
0, otherwise

, and FX2 (x) =


0, x < 0
x
3 , 0 ≤ x < 3
1, x ≥ 3,

Since S1 holds with probability 1
2 and S2 holds with 1

2 , we have that
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Example

FX (x) = 1
2FX1 (x) + 1

2FX2 (x) =


0, x < 0
x
6 , 0 ≤ x < 1
1
2 + x

6 , 1 ≤ x < 3
1, x ≥ 3,

DX = {1}, because

FX (1)− FX (1−) = 2
3 −

1
2

= 1
2 = P(X = 1) < 1
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Exercise: Let

FX (x) =


0 x < 0

1
12 + 3

4 (1− e−x ) 0 ≤ x < 1
1
4 + 3

4 (1− e−x ) x ≥ 1
,

Compute P(X = 0), P(X = 1),
P (0.5 < X < 1) and P (0.5 < X < 2).

Answer:

P(X = 0) = 1
12 , P(X = 1) = 2

12
P (0.5 < X < 1) = FX (1)− FX (0.5)− P(X = 1) = 3

4
(
e−0.5 − e−1)

P (0.5 < X < 2) = FX (2)− FX (0.5) = 2
12 + 3

4
(
e−0.5 − e−2)
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Distribution of functions of random variables
Motivation: Assume that the random variable D represents the
demand of a given product in a store. The profit of this store is
represented by the random variable L = 4D − 5. If the probability
function of D is given by

P(D = d) =


0.3, d = 0
0.2, d = 1
0.3, d = 2
0.2, d = 3

,

what is the probability of having L > 2?

P(L > 2) = P
(

D >
7
4

)
= P(D = 2) + P(D = 3) = 0.5

Since L is a random variable, it should be possible to find its
distribution. How to do it?
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Let X be a known random variable with known cumulative
distribution function FX (x).

Consider a new random variable Y = g(X ), where g : R→ R is
a known function. Let FY (y) be the cumulative distribution
function of Y . How can we derive FY (y) from FX (x)?.

The derivation of FY (y) is based on the equality

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y) = P(X ∈ A∗y )

where A∗y = {x : g(x) ≤ y}
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Examples: Derive the cumulative distribution functions of
Y = aX + b, where a > 0 and Z = X 2.

Y = aX + b

FY (y) = P(Y ≤ y) = P(aX + b ≤ y)

= P
(

X ≤ y − b
a

)
= FX

(
y − b

a

)

Z = X 2

For z ≥ 0,

FZ (z) = P(Z ≤ z) = P(X 2 ≤ z)
= P

(
−
√

z ≤ X ≤
√

z
)

= FX
(√

z
)
− FX

(
−
√

z
)

+ P(X = −
√

z)
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Examples: Assume that in the previous example X is a continuous
random variable such that

FX (x) =


0, x < 0
x , 0 ≤ x < 1
1, x ≥ 1

,

then the following holds:
Y = aX + b

FY (y) =FX

(
y − b

a

)
=


0, y−b

a < 0
y−b

a , 0 ≤ y−b
a < 1

1, y−b
a ≥ 1

=


0, y < b
y−b

a , b ≤ y < a + b
1, y ≥ a + b
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Examples: Assume that in the previous example X is a continuous
random variable such that

FX (x) =


0, x < 0
x , 0 ≤ x < 1
1, x ≥ 1

,

then the following holds:
Z = X 2

If z < 0 then FZ (z) = P(Z ≤ z) = 0. When z ≥ 0
FZ (z) = FX

(√
z
)
− FX

(
−
√

z
)

+ P(X = −
√

z)︸ ︷︷ ︸
=0, because X is continuous

= FX
(√

z
)
− FX

(
−
√

z
)︸ ︷︷ ︸

=0 because −
√

z is negative

=


0, z < 0
√

z , 0 ≤ z < 1
1, z ≥ 1
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Discrete random variables

When X is a discrete random variable, it is easier to find the
distribution of Y = g(X ). In this case, we will derive the
probability function.
Let DX = {x1, x2, x3...} be the set of discontinuities of FX (x),
then DY = {g(x1), g(x2), g(x3)...} is the set of discontinuities of
FY (y).
The probability function of Y is given by

fY (y) = P(Y = y) = P(g(X ) = y)
= P(X ∈ {x ∈ DX : g(x) = y})

=
∑

xi∈{x∈DX :g(x)=y}

f (xi )
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Discrete random variables
Consider the discrete random variable X with probability function

x −2 −1 0 1 2
fX (x) 12/60 15/60 10/60 6/60 17/60

Let Y = X 2, what is fY (y)?

Firstly: The set of discontinuities DY is DY = {0, 1, 4}

x −2 −1 0 1 2
y = x2 4 1 0 1 4

Consequently
fY (0) = P(Y = 0) = P(X 2 = 0) = P(X 2 = 0) = 10

60 .
fY (1) = P(Y = 1) = P(X 2 = 1) = P(X = 1) + P(X = −1) =
6/60 + 15/60 = 21/60.
fY (4) = P(Y = 4) = P(X 2 = 4) = P(X = 2) + P(X = −2) =
17/60 + 12/60 = 29/60.
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